
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

1 Instructor: Daniel Llamocca

Notes - Unit 2

OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

BASIC TECHNIQUES:
 We can always minimize logic functions using the Boolean theorems. However, more powerful methods such as Karnaugh

maps and Quine-McCluskey algorithm exist: they provide a deterministic way to check that the minimal form of a Boolean
function has been reached.

KARNAUGH MAPS:

2 variables:

3 variables:

m0 m2

x y

0 0

0 1

1 0

1 1

f

m0
m1
m2
m3

m1 m3

y

x

0 1

x y

0 0

0 1

1 0

1 1

f

0

1

1

0
1 0

y

x

x

0

1

0 1

x

y

y

f = x'y + y'x = m1+m2

x x

y

y

1 0

x y

0 0

0 1

1 0

1 1

f

1

1

0

1
1 1

y

x

f = x' + y
x x

y

y

m0 m2

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

m0
m1
m2
m3
m4
m5
m6
m7

m1 m3

z

xy

x y

0

1

00 01

z

zm6 m4

m7 m5

11 10

x y x y x y

x x

yy y

1 0

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

1

1

0

0

1

0

0

1

1 0

z

xy

x y

0

1

00 01

z

z0 1

1 0

11 10

x y x y x y

x x

yy y

f = x'y' + z'y' + xyz

1 1

0 0

z

xy

x y

0

1

00 01

z

z1 1

0 1

11 10

x y x y x y

x x

yy y

f = xy' + z'

1 1

1 0

z

xy

x y

0

1

00 01

z

z1 1

0 1

11 10

x y x y x y

x x

yy y

f = y' + z'

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

2 Instructor: Daniel Llamocca

4 variables:

Don’t care outputs

 This method appears in: “The Map Method for Synthesis of Combinational Logic Circuits”, Maurice Karnaugh, Transactions

of the AIEE, Part I: Communication and Electronics, vol. 72, no. 5, Nov. 1953, pp. 593-599. Karnaugh maps of 5, 6, 7, 8,
and 9 are hinted at. Beyond 9 variables, the mental gymnastics for minimization are claimed to be formidable.

 The Quine-McCluskey algorithm provides a simpler approach when dealing with a relatively large number of variables.

m0 m4

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

m0
m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11
m12
m13
m14
m15

m1 m5

zw

xy

x y

00

00 01

m8

m9

11 10

x y x y x y

x x

yy y

m3 m7

m2 m6

m11

m10

m12

m13

m15

m14

01

11

10

z w

z w

z w

z w

z

z

w

w

w

1 0

x y z w

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

f

1

0

1

0

0

1

0

1

0

1

0

0

0

0

0

0

0 1

zw

xy

x y

00

00 01

0 0

0 1

11 10

x y x y x y

x x

yy y

0 1

1 0

0 0

0 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = x'y'w' + x'yw + xy'z'w

1 0

0 1

zw

xy

x y

00

00 01

0 1

1 0

11 10

x y x y x y

x x

yy y

0 1

1 0

1 0

0 1

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = y'w' + wy

1 1

0 0

zw

xy

x y

00

00 01

1 1

0 0

11 10

x y x y x y

x x

yy y

1 0

1 1

0 1

1 1

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = y'z + w'

0 0

1 0

zw

xy

x y

00

00 01

0 0

0 1

11 10

x y x y x y

x x

yy y

1 0

0 0

0 1

X 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = wy'

0 0

1 1

zw

xy

x y

00

00 01

0 0

1 X

11 10

x y x y x y

x x

yy y

0 0

0 0

0 0

X 0

01

11

10

z w

z w

z w

z w

z

z

w

w

w

f = z'w

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

3 Instructor: Daniel Llamocca

QUINE-MCCLUSKEY ALGORITHM:

 Literal: For an 𝑛 −variable function 𝐹, it is a variable expressed as 𝑋 or �̅�.

 Implicant: For an 𝑛 −variable function, it is any product term that can appear in any possible sum of products (canonical

or non-canonical) that represents the function. If P is an implicant, then P=1 implies that the function is 1. Thus, every
minterm is an implicant.
A graphical way to see the implicants of a function is to take a look at the Karnaugh map (for a relatively low number of
variables). All the possible terms we can get out of the K-map are implicants.

 Prime implicant: It is an implicant P such that the removal of any literal from P results in non-implicant of the function.

OUTLINE

1. Get the function to be minimized represented as a canonical Sum of Products: Use the minterm expansion form.

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑ 𝑚(0,1,2,5,6,7,8,9,10,14)

2. Get the Prime Implicants of the function: This is done by systematically applying 𝑋𝑌 + 𝑋�̅� = 𝑋 to all possible minterms

and resulting non-canonical product terms. So, we build the Implicants Table by determining all Implicants:
 We represent the minterms using the binary notation. For example: 𝑚1 = �̅��̅�𝐶̅𝐷 = 0001. Then, we group the minterms

by the number of ones they contain. For an 𝑛 −variable function, the minterms have 𝑛 literals.

 We apply 𝑋𝑌 + 𝑋�̅� = 𝑋 to all possible pairs of minterms. This applies to pair of minterms that only vary by one literal.
We attach a ‘’ to every minterm that was employed.

𝑚0,1 = 𝑚0 + 𝑚1 = �̅��̅�𝐶̅�̅� + �̅��̅�𝐶̅𝐷 = �̅��̅�𝐶̅

Note the table representation: 𝑚0,1 = 𝑚0 + 𝑚1 = 0000 + 0001 = 000 −. The symbol " − " indicates that a literal was

simplified. The resulting column consists of terms with 𝑛 − 1 literals.

 We keep applying 𝑋𝑌 + 𝑋�̅� = 𝑋 to all possible pair of resulting product terms. We attach a ‘’ to every term that was
employed. For each column we add, an extra literal is simplified (or a symbol " − " is added to the terms).

𝑚0,1,8,9 = 𝑚0,1 + 𝑚8.9 = �̅��̅�𝐶̅ + 𝐴�̅�𝐶̅ = �̅�𝐶̅ ≡ 000 − + 100− = −00 −

If we happen to get a repeated term, we eliminate one:
𝑚0,1,8,9 = 𝑚0,8,1,9 = −00−, → 𝑚0,8,1,9 𝑖𝑠 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑

 When we cannot simplify any further, we stop and look for the terms that do not have a check ‘’. These terms are
called the Prime Implicants. All the terms that appear in the table are the Implicants.

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

0 m0 = 0000

m0,1 = 000-

m0,2 = 00-0

m0,8 = -000

m0,1,8,9 = -00-

m0,2,8,10 = -0-0

m0,8,1,9 = -00-

We can’t combine

any further, so we

stop here

1

m1 = 0001

m2 = 0010

m8 = 1000

m1,5 = 0-01

m1,9 = -001

m2,6 = 0-10

m8,9 = 100-

m8,10 = 10-0

m2,10 = -010

m2,6,10,14 = --10

m2,10,6,14 = --10

2

m5 = 0101

m6 = 0110

m9 = 1001

m10= 1010

m5,7 = 01-1

m6,7 = 011-

m6,14 = -110

m10,14 = 1-10

3
m7 = 0111

m14= 1110

4

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴�̅�𝐷 + 𝐴𝐵𝐷 + 𝐴𝐵𝐶 + �̅��̅� + �̅��̅� + 𝐶�̅�

3. Select a minimum set of Prime Implicants: 𝐹 is the sum of this set that contains the minimum number of literals.

 Build the Prime Implicant Chart. Mark the minterms that cover each single Prime Implicant with an ‘X’.

 Get the Essential Prime Implicants: Look for minterms that are covered by (are part of) a single Prime Implicant:

this is, look for columns with one X. The corresponding Prime Implicants are the Essential Prime Implicants.

The minimized 𝐹 includes the Essential Prime Implicants. Thus, we must get rid of all the covered minterms of an

Essential Prime Implicant: cross out the rows of the Essential Prime Implicants and the columns of the covered minterms.
In the example, the Essential Prime Implicants are: �̅�𝐶̅, 𝐶�̅�

 For the remaining X’s: select enough Prime Implicants to cover all the minterms of the function. This is a trial and error
procedure: start by selecting the Prime Implicant that crosses out (rows and columns) most of the Xs, and so on.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

4 Instructor: Daniel Llamocca

Prime

Implicants

Minterms

0 1 2 5 6 7 8 9 10 14

m0,1,8,9 �̅�𝐶̅ X X X X

m0,2,8,10 �̅��̅� X X X X

m2,6,10,14 𝐶�̅� X X X X

m1,5 �̅�𝐶̅𝐷 X X

m5,7 �̅�𝐵𝐷 X X

m6,7 �̅�𝐵𝐶 X X

→ 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = �̅��̅� + 𝐶�̅� + 𝐴𝐵𝐷

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑ 𝑚(4,8,10,11,12,15) + ∑ 𝑑(9,14). Function with don’t care terms.

 Implicants Table: To help simplifying the function, the don’t care terms are included as minterms here. If a don’t care

term ends up being a Prime Implicant, we delete it (otherwise we are not taking advantage of the don’t care terms).

Number

of ones

4-literal

implicants

3-literal

implicants

2-literal

implicants

1-literal

implicants

0

We can’t combine

any further, so we

stop here

1
m4 = 0100

m8 = 1000

m4,12 = -100

m8,9 = 100-

m8,10 = 10-0

m8,12 = 1-00

m8,9,10,11 = 10--

m8,10,9,11 = 10--

m8,10,12,14 = 1--0

m8,12,10,14 = 1--0

2

m9 = 1001

m10= 1010

m12= 1100

m9,11 = 10-1

m10,11 = 101-

m10,14 = 1-10

m12,14 = 11-0

m10,11,14,15 = 1-1-

m10,14,11,15 = 1-1-

3
m11= 1011

m14= 1110

m11,15 = 1-11

m14,15 = 111-

4 m15= 1111

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵�̅��̅� + 𝐴�̅� + 𝐴�̅� + 𝐴𝐶

 Prime Implicant Chart: The don’t care terms are NOT included here. Only the minterms are included here, since we are

trying to have as few X’s as possible.
Prime

Implicants

Minterms

4 8 10 11 12 15

m4,12 𝐵𝐶̅�̅� X X

m8,9,10,11 𝐴�̅� X X X

m8,10,12,14 𝐴�̅� X X X

m10,11,14,15 𝐴𝐶 X X X

 More than one minimal solution exist, depending on the X (in the same pink column) that we use:

→ 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵�̅��̅� + 𝐴𝐶 + 𝐴�̅�

𝑂𝑟: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵�̅��̅� + 𝐴𝐶 + 𝐴�̅�

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶) = ∑ 𝑚(0,1,2,5,6,7)

 Implicants Table:

Number

of ones

3-literal

implicants

2-literal

implicants

1-literal

implicants

0 m0 = 000
m0,1 = 00-

m0,2 = 0-0

We can’t combine

any further, so

we stop here

1
m1 = 001

m2 = 010

m1,5 = -01

m2,6 = -10

2
m5 = 101

m6 = 110

m5,7 = 1-1

m6,7 = 11-

3 m7 = 111

𝐹(𝐴, 𝐵, 𝐶) = 𝐴�̅� + �̅�𝐶̅ + �̅�𝐶 + 𝐵𝐶̅ + 𝐴𝐶 + 𝐴𝐵

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Digital Logic and Microprocessor Design Winter 2015

5 Instructor: Daniel Llamocca

 Prime Implicant Chart:

Prime

Implicants

Minterms

0 1 2 5 6 7

m0,1 �̅��̅� X X

m0,2 �̅�𝐶̅ X X

m1,5 �̅�𝐶 X X

m2,6 𝐵𝐶̅ X X

m5,7 𝐴𝐶 X X

m6,7 𝐴𝐵 X X

 No essential prime implicants. So, we can only select the minimum number of Prime Implicants that covers all the

minterms. For the given arrangement, there is only one solution:

𝐹(𝐴, 𝐵, 𝐶) = 𝐴�̅� + 𝐵𝐶̅ + 𝐴𝐶

 In the previous example, there were 2 solutions because we could pick any X in a column. Here, we can only pick one,

that’s why we have one solution.

 However, notice that there can be another way to cross out rows and columns producing a minimal solution:

Prime

Implicants

Minterms

0 1 2 5 6 7

m0,1 �̅��̅� X X

m0,2 �̅�𝐶̅ X X

m1,5 �̅�𝐶 X X

m2,6 𝐵𝐶̅ X X

m5,7 𝐴𝐶 X X

m6,7 𝐴𝐵 X X

 Again, for this particular arrangement, there is only one minimal solution:

𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐶̅ + �̅�𝐶 + 𝐴𝐵

ISSUES:

 To determine a minimal solution (i.e. solution with the same number of literals), we need to efficiently cross out rows and

columns. We can do this by trial and error, but it can become a cumbersome procedure as the number of variables increase.
And as illustrated in the example, there can be more than one way to efficiently cross out rows and columns.

 There can also be more than one minimal solution (even if there is only one way to efficiently cross out rows and columns)

resulting from this method. We can determine all possible minimal solutions by inspection, but this can become cumbersome
as the number of variables increase.

 A systematic way to determine all possible minimum solutions is provided by Petrick’s method: given a prime implicant

chart, we can determine all minimum sum-of-products solutions. This is out of the scope of this class.

