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Notes - Unit 2 
 

OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS 
 

BASIC TECHNIQUES: 
 We can always minimize logic functions using the Boolean theorems. However, more powerful methods such as Karnaugh 

maps and Quine-McCluskey algorithm exist: they provide a deterministic way to check that the minimal form of a Boolean 
function has been reached.  

 

KARNAUGH MAPS: 
 
2 variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 variables: 
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4 variables: 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Don’t care outputs 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 This method appears in: “The Map Method for Synthesis of Combinational Logic Circuits”, Maurice Karnaugh, Transactions 

of the AIEE, Part I: Communication and Electronics, vol. 72, no. 5, Nov. 1953, pp. 593-599. Karnaugh maps of 5, 6, 7, 8, 
and 9 are hinted at. Beyond 9 variables, the mental gymnastics for minimization are claimed to be formidable. 

 The Quine-McCluskey algorithm provides a simpler approach when dealing with a relatively large number of variables.  
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QUINE-MCCLUSKEY ALGORITHM: 
 

 Literal: For an 𝑛 −variable function 𝐹, it is a variable expressed as 𝑋 or �̅�. 

 Implicant: For an 𝑛 −variable function, it is any product term that can appear in any possible sum of products (canonical 

or non-canonical) that represents the function. If P is an implicant, then P=1 implies that the function is 1. Thus, every 
minterm is an implicant. 
A graphical way to see the implicants of a function is to take a look at the Karnaugh map (for a relatively low number of 
variables). All the possible terms we can get out of the K-map are implicants. 

 Prime implicant: It is an implicant P such that the removal of any literal from P results in non-implicant of the function. 
  

OUTLINE 

1. Get the function to be minimized represented as a canonical Sum of Products: Use the minterm expansion form. 

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑ 𝑚(0,1,2,5,6,7,8,9,10,14) 

2. Get the Prime Implicants of the function: This is done by systematically applying 𝑋𝑌 + 𝑋�̅� = 𝑋 to all possible minterms 

and resulting non-canonical product terms. So, we build the Implicants Table by determining all Implicants: 
 We represent the minterms using the binary notation. For example: 𝑚1 = �̅��̅�𝐶̅𝐷 = 0001. Then, we group the minterms 

by the number of ones they contain. For an 𝑛 −variable function, the minterms have 𝑛 literals. 

 We apply 𝑋𝑌 + 𝑋�̅� = 𝑋 to all possible pairs of minterms. This applies to pair of minterms that only vary by one literal. 
We attach a ‘’ to every minterm that was employed. 

𝑚0,1 = 𝑚0 + 𝑚1 = �̅��̅�𝐶̅�̅� + �̅��̅�𝐶̅𝐷 = �̅��̅�𝐶̅ 

Note the table representation: 𝑚0,1 = 𝑚0 + 𝑚1 = 0000 + 0001 = 000 −. The symbol " − " indicates that a literal was 

simplified. The resulting column consists of terms with 𝑛 − 1 literals. 

 We keep applying 𝑋𝑌 + 𝑋�̅� = 𝑋 to all possible pair of resulting product terms. We attach a ‘’ to every term that was 
employed. For each column we add, an extra literal is simplified (or a symbol " − " is added to the terms).  

𝑚0,1,8,9 = 𝑚0,1 + 𝑚8.9 = �̅��̅�𝐶̅ + 𝐴�̅�𝐶̅ = �̅�𝐶̅ ≡ 000 −  + 100− = −00 − 

If we happen to get a repeated term, we eliminate one: 
𝑚0,1,8,9 = 𝑚0,8,1,9 = −00−, → 𝑚0,8,1,9 𝑖𝑠 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑 

 When we cannot simplify any further, we stop and look for the terms that do not have a check ‘’. These terms are 
called the Prime Implicants. All the terms that appear in the table are the Implicants. 

 
Number 

of ones 

4-literal 

implicants 

3-literal 

implicants 

2-literal 

implicants 

1-literal 

implicants 

0 m0 = 0000  

m0,1   = 000-  

m0,2   = 00-0  

m0,8   = -000  

m0,1,8,9   = -00- 

m0,2,8,10  = -0-0 

m0,8,1,9   = -00- 

We can’t combine 

any further, so we 

stop here 

1 

m1 = 0001  

m2 = 0010  

m8 = 1000  

m1,5   = 0-01 

m1,9   = -001  

m2,6   = 0-10  

m8,9   = 100-  

m8,10  = 10-0  

m2,10  = -010  

m2,6,10,14 = --10 

m2,10,6,14 = --10 

 

2 

m5 = 0101  

m6 = 0110  

m9 = 1001  

m10= 1010  

m5,7   = 01-1 

m6,7   = 011- 

m6,14  = -110  

m10,14 = 1-10  

 

3 
m7 = 0111  

m14= 1110  

  

4    

 

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴�̅�𝐷 + 𝐴𝐵𝐷 + 𝐴𝐵𝐶 + �̅��̅� + �̅��̅� + 𝐶�̅� 

 

3. Select a minimum set of Prime Implicants: 𝐹 is the sum of this set that contains the minimum number of literals.  

 Build the Prime Implicant Chart. Mark the minterms that cover each single Prime Implicant with an ‘X’. 

 Get the Essential Prime Implicants: Look for minterms that are covered by (are part of) a single Prime Implicant: 

this is, look for columns with one X. The corresponding Prime Implicants are the Essential Prime Implicants. 

The minimized 𝐹 includes the Essential Prime Implicants. Thus, we must get rid of all the covered minterms of an 

Essential Prime Implicant: cross out the rows of the Essential Prime Implicants and the columns of the covered minterms. 
In the example, the Essential Prime Implicants are: �̅�𝐶̅, 𝐶�̅� 

 For the remaining X’s: select enough Prime Implicants to cover all the minterms of the function. This is a trial and error 
procedure: start by selecting the Prime Implicant that crosses out (rows and columns) most of the Xs, and so on.  
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Prime 

Implicants 

Minterms 

0 1 2 5 6 7 8 9 10 14 

m0,1,8,9 �̅�𝐶̅ X X     X X   

m0,2,8,10 �̅��̅� X  X    X  X  

m2,6,10,14 𝐶�̅�   X  X    X X 

m1,5 �̅�𝐶̅𝐷  X  X       

m5,7 �̅�𝐵𝐷    X  X     

m6,7 �̅�𝐵𝐶     X X     

 

→ 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = �̅��̅� + 𝐶�̅� + 𝐴𝐵𝐷 

 

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑ 𝑚(4,8,10,11,12,15) + ∑ 𝑑(9,14). Function with don’t care terms. 

 
 Implicants Table: To help simplifying the function, the don’t care terms are included as minterms here. If a don’t care 

term ends up being a Prime Implicant, we delete it (otherwise we are not taking advantage of the don’t care terms). 
 

Number 

of ones 

4-literal 

implicants 

3-literal 

implicants 

2-literal 

implicants 

1-literal 

implicants 

0    

We can’t combine 

any further, so we 

stop here 

1 
m4 = 0100  

m8 = 1000  

m4,12  = -100 

m8,9   = 100-  

m8,10  = 10-0  

m8,12  = 1-00  

m8,9,10,11   = 10-- 

m8,10,9,11   = 10-- 

m8,10,12,14  = 1--0 

m8,12,10,14  = 1--0 

2 

m9 = 1001  

m10= 1010  

m12= 1100  

m9,11  = 10-1  

m10,11 = 101-  

m10,14 = 1-10  

m12,14 = 11-0  

m10,11,14,15  = 1-1- 

m10,14,11,15  = 1-1- 

3 
m11= 1011  

m14= 1110  

m11,15 = 1-11  

m14,15 = 111-  

 

4 m15= 1111    

 

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵�̅��̅� + 𝐴�̅� + 𝐴�̅� + 𝐴𝐶 

 
 Prime Implicant Chart: The don’t care terms are NOT included here. Only the minterms are included here, since we are 

trying to have as few X’s as possible. 
Prime 

Implicants 

Minterms 

4 8 10 11 12 15 

m4,12 𝐵𝐶̅�̅� X    X  

m8,9,10,11 𝐴�̅�  X X X   

m8,10,12,14 𝐴�̅�  X X  X  

m10,11,14,15 𝐴𝐶   X X  X 

 
 More than one minimal solution exist, depending on the X (in the same pink column) that we use:  

→ 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵�̅��̅� + 𝐴𝐶 + 𝐴�̅� 

𝑂𝑟: 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵�̅��̅� + 𝐴𝐶 + 𝐴�̅� 

 
  

EXAMPLE: 𝐹(𝐴, 𝐵, 𝐶) = ∑ 𝑚(0,1,2,5,6,7) 
 
 Implicants Table:  

Number 

of ones 

3-literal 

implicants 

2-literal 

implicants 

1-literal 

implicants 

0 m0 = 000  
m0,1  = 00- 

m0,2  = 0-0 

We can’t combine 

any further, so 

we stop here 

1 
m1 = 001  

m2 = 010  

m1,5  = -01 

m2,6  = -10 

2 
m5 = 101  

m6 = 110  

m5,7  = 1-1 

m6,7  = 11- 

3 m7 = 111   

 

𝐹(𝐴, 𝐵, 𝐶) = 𝐴�̅� + �̅�𝐶̅ + �̅�𝐶 + 𝐵𝐶̅ + 𝐴𝐶 + 𝐴𝐵  
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 Prime Implicant Chart: 
 

Prime 

Implicants 

Minterms 

0 1 2 5 6 7 

m0,1 �̅��̅� X X     

m0,2 �̅�𝐶̅ X  X    

m1,5 �̅�𝐶  X  X   

m2,6 𝐵𝐶̅   X  X  

m5,7 𝐴𝐶    X  X 

m6,7 𝐴𝐵     X X 

 
 No essential prime implicants. So, we can only select the minimum number of Prime Implicants that covers all the 

minterms. For the given arrangement, there is only one solution: 

𝐹(𝐴, 𝐵, 𝐶) = 𝐴�̅� + 𝐵𝐶̅ + 𝐴𝐶 

 
 In the previous example, there were 2 solutions because we could pick any X in a column. Here, we can only pick one, 

that’s why we have one solution. 

 
 However, notice that there can be another way to cross out rows and columns producing a minimal solution: 

 
Prime 

Implicants 

Minterms 

0 1 2 5 6 7 

m0,1 �̅��̅� X X     

m0,2 �̅�𝐶̅ X  X    

m1,5 �̅�𝐶  X  X   

m2,6 𝐵𝐶̅   X  X  

m5,7 𝐴𝐶    X  X 

m6,7 𝐴𝐵     X X 

 
 Again, for this particular arrangement, there is only one minimal solution: 

𝐹(𝐴, 𝐵, 𝐶) = 𝐴𝐶̅ + �̅�𝐶 + 𝐴𝐵 

 
 

ISSUES: 
 
 To determine a minimal solution (i.e. solution with the same number of literals), we need to efficiently cross out rows and 

columns. We can do this by trial and error, but it can become a cumbersome procedure as the number of variables increase. 
And as illustrated in the example, there can be more than one way to efficiently cross out rows and columns. 

 
 There can also be more than one minimal solution (even if there is only one way to efficiently cross out rows and columns) 

resulting from this method. We can determine all possible minimal solutions by inspection, but this can become cumbersome 
as the number of variables increase.  

 
 A systematic way to determine all possible minimum solutions is provided by Petrick’s method: given a prime implicant 

chart, we can determine all minimum sum-of-products solutions. This is out of the scope of this class. 
 


